#include <bits/stdc++.h>
using namespace std;
template <typename T> ostream& operator<<(ostream &os, const vector<T> &v) { os << '{'; string sep; for (const auto &x : v) os << sep << x, sep = ", "; return os << '}'; }
template <typename A, typename B> ostream& operator<<(ostream &os, const pair<A, B> &p) { return os << '(' << p.first << ", " << p.second << ')'; }
using i64 = long long int;
const int INF = INT_MAX, MOD = 1e9 + 7;
const double EPS = 1e-9, PI = acos(-1);
const int dx[] = {0, 0, 0, -1, 1, -1, 1, 1, -1};
const int dy[] = {0, -1, 1, 0, 0, -1, 1, -1, 1};
struct Graph {
struct Edge {
int u, v, cap;
Edge(int u, int v, int cap) : u(u), v(v), cap(cap) {}
};
vector<Edge> edges;
vector<vector<int>> adj, capacity;
vector<int> parent, marked, ans;
int n;
Graph(int _n = -1) {
init(_n);
}
void init(int _n) {
n = _n;
adj.resize(n + 1);
capacity.resize(n + 1, vector<int>(n + 1, 0));
parent.resize(n + 1);
marked.assign(n + 1, false);
}
void addEdge(int u, int v, int cap) {
adj[u].push_back(v);
adj[v].push_back(u);
capacity[u][v] = cap;
capacity[v][u] = cap;
}
int bfs(int s, int t) {
fill(parent.begin(), parent.end(), -1);
parent[s] = -2;
queue<int> Q;
Q.push(s);
while (not Q.empty()) {
int cur = Q.front();
Q.pop();
for (auto nxt: adj[cur]) {
if (parent[nxt] == -1 and capacity[cur][nxt]) {
parent[nxt] = cur;
if (nxt == t) return true;
Q.push(nxt);
}
}
}
return false;
}
int maxFlow(int s, int t) {
int64_t flow = 0;
int new_flow = 0;
while (bfs(s, t)) {
for (auto node: adj[t]) {
if (parent[node] != -1 && capacity[node][t]) {
new_flow = INF;
parent[t] = node;
int cur = t;
while (cur != s) {
new_flow = min(new_flow, capacity[parent[cur]][cur]);
cur = parent[cur];
}
if (new_flow == 0) continue;
cur = t;
while (cur != s) {
capacity[parent[cur]][cur] -= new_flow;
capacity[cur][parent[cur]] += new_flow;
cur = parent[cur];
}
flow += 1LL * new_flow;
}
}
}
return flow;
}
/// Create the min-cut set with the source
void dfs(int node) {
marked[node] = true;
for (auto next: adj[node]) {
if (not marked[next] and capacity[node][next])
dfs(next);
}
}
/// Idea: Compute the maximum flow in the network. After that, we have to find the min-cut
/// edges. First we make the cut-set with the source and then find all the edges that have
/// capacity 0 and two nodes in different sets
void solve(int s, int t) {
int flow = maxFlow(s, t);
/// Compute min-cut set with source
dfs(s);
for (int i = 0; i < (int) edges.size(); i++) {
if ((marked[edges[i].u] and not marked[edges[i].v] and capacity[edges[i].u][edges[i].v] == 0)
or (marked[edges[i].v] and not marked[edges[i].u] and capacity[edges[i].v][edges[i].u] == 0))
ans.push_back(i + 1);
}
}
};
int main() {
ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
/// mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
ifstream cin("critice.in");
ofstream cout("critice.out");
int n, m;
cin >> n >> m;
Graph graph(n);
for (int i = 1; i <= m; i++) {
int u, v, c;
cin >> u >> v >> c;
graph.addEdge(u, v, c);
graph.edges.emplace_back(u, v, c);
}
graph.solve(1, n);
cout << graph.ans.size() << "\n";
for (auto node: graph.ans)
cout << node << "\n";
return 0;
}