Cod sursa(job #2691631)

Utilizator retrogradLucian Bicsi retrograd Data 29 decembrie 2020 14:42:12
Problema Flux maxim de cost minim Scor 0
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 2.49 kb
#include <bits/stdc++.h>

using namespace std;

using T = int;
const T INF = numeric_limits<T>::max() / 4;

struct MFMC {
  struct Edge { int to, nxt; T flow, cap, cost; };
  
  int n;
  vector<T> dist, pi;
  vector<int> par, graph;
  vector<Edge> es;
  
  MFMC(int n) : n(n), pi(n, 0), graph(n, -1) {}
  
  void AddEdge(int a, int b, T cap, T cost) {
    auto add = [&](int a, int b, T cap, T cost) {
      es.push_back({b, graph[a], 0, cap, cost});
      graph[a] = es.size() - 1;
    };
    add(a, b, cap, cost); add(b, a, 0, -cost);
  }
  bool dijkstra(int s, int t) {
    dist.assign(n, INF); par.assign(n, -1);
    priority_queue<pair<T, int>> pq; 
    dist[s] = 0; pq.emplace(0, s); 
    while (!pq.empty()) {
      auto [d, node] = pq.top(); pq.pop();
      if (dist[node] != -d) continue;
      for (int ei = graph[node]; ei >= 0; ei = es[ei].nxt) {
        const auto &e = es[ei];
        T now = dist[node] + pi[node] - pi[e.to] + e.cost;
        if (e.flow < e.cap && now < dist[e.to]) {
          dist[e.to] = now; par[e.to] = ei;
          pq.emplace(-dist[e.to], e.to);
        }
      }
    }
    for (int i = 0; i < n; ++i)
      pi[i] = min(pi[i] + dist[i], INF);
    return par[t] != -1;
  }
  pair<T, T> Compute(int s, int t) {
    T flow = 0, cost = 0;
    while (dijkstra(s, t)) {
      T now = INF;
      for (int node = t; node != s; ) {
        int ei = par[node];
        now = min(now, es[ei].cap - es[ei].flow);
        node = es[ei^1].to;
      }
      for (int node = t; node != s; ) {
        int ei = par[node];
        es[ ei ].flow += now;
        es[ei^1].flow -= now;
        cost += es[ei].cost * now;
        node = es[ei^1].to;
      }
      flow += now;
    }
    return {flow, cost};
  }
  // If some costs can be negative, call this before maxflow:
  void SetPi(int s) { // (otherwise, leave this out)
    pi.assign(n, INF); pi[s] = 0;
    int it = n, ch = 1;
    while (ch-- && it--)
      for (int i = 0; i < n; ++i) if (pi[i] != INF)
        for (int ei = graph[i]; ei >= 0; ei = es[ei].nxt) {
          const auto& e = es[ei];
          T now = pi[i] + e.cost;
          if (e.cap && now < pi[e.to])
            pi[e.to] = now, ch = 1;
        }
    assert(it >= 0); // negative cost cycle
  }
};

int main() {
  ifstream cin("fmcm.in");
  ofstream cout("fmcm.out");

  int n, m, s, t; cin >> n >> m >> s >> t;
  MFMC F(n);
  for (int i = 0; i < m; ++i) {
    int a, b, c, k; cin >> a >> b >> c >> k;
    F.AddEdge(a - 1, b - 1, c, k);
  }
  cout << F.Compute(s - 1, t - 1).second << endl;
  return 0;
}