Cod sursa(job #2689626)

Utilizator Constantin.Dragancea Constantin Constantin. Data 21 decembrie 2020 18:01:39
Problema Flux maxim de cost minim Scor 100
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 2.44 kb
#include <bits/stdc++.h>
using namespace std;

struct Graph{
	int n, s, d;
	vector < vector <int> > graph;
	vector < vector <int> > cap, cost;
	vector <int> cost_dist, flux_dist, pr;
	queue <int> Q;
	priority_queue < pair <int, int> > S;
	vector <bool> vis;

	Graph(int _n, int _s, int _d): n(_n), s(_s), d(_d), graph(n),
		cap(n, vector<int>(n)), cost(cap), cost_dist(n),
		flux_dist(n), pr(n), vis(n) { }

	void AddEdge(int a, int b, int cp, int cst){
		graph[a].push_back(b);
		graph[b].push_back(a);
		cap[a][b] += cp;
		cost[a][b] += cst;
		cost[b][a] -= cst;
	}

	void Bellman(){
		fill(cost_dist.begin(), cost_dist.end(), 1e9);
		fill(vis.begin(), vis.end(), 0);

		Q.push(s);
		cost_dist[s] = 0;
		vis[s] = 1;

		while (not Q.empty()){
			int node = Q.front();
			Q.pop();
			vis[node] = 0;

			int curr_cost = cost_dist[node];

			for (int nei: graph[node]){
				if (!cap[node][nei])
					continue;

				int new_dist = curr_cost + cost[node][nei];
				if (new_dist < cost_dist[nei]){
					cost_dist[nei] = new_dist;
					if (!vis[nei]){
						vis[nei] = 1;
						Q.push(nei);
					}
				}
			}
		}
	}

	int Dijkstra(){
		fill(flux_dist.begin(), flux_dist.end(), 1e9);
		vector <int> aux(n, 1e9);

		S.push({0, s});
		flux_dist[s] = 0;
		aux[s] = 0;

		while (not S.empty()){
			int curr_cost = -S.top().first;
			int node = S.top().second;
			S.pop();

			if (curr_cost != flux_dist[node])
				continue;

			for (int nei: graph[node]){
				if (!cap[node][nei])
					continue;
				int new_dist = curr_cost + cost[node][nei] + cost_dist[node] - cost_dist[nei];
				if (new_dist < flux_dist[nei]){
					flux_dist[nei] = new_dist;
					S.push({-flux_dist[nei], nei});
					pr[nei] = node;
					aux[nei] = aux[node] + cost[node][nei];
				}
			}
		}

		if (flux_dist[d] == 1e9)
			return 0;

		int flow = 1e9;
		for (int node = d; node != s; node = pr[node])
			flow = min(flow, cap[pr[node]][node]);

		for (int node = d; node != s; node = pr[node]){
			cap[pr[node]][node] -= flow;
			cap[node][pr[node]] += flow;
		}

		cost_dist = aux;

		return cost_dist[d] * flow;
	}

	int MinCostMaxFlow(){
		Bellman();

		int ans = 0;
		while (auto lol = Dijkstra())
			ans += lol;
		
		return ans;
	}
};



int main(){
	ifstream cin("fmcm.in");
	ofstream cout("fmcm.out");

	int n, m, s, d;
	cin >> n >> m >> s >> d;
	s--; d--;
	
	Graph G(n, s, d);

	while (m--){
		int a, b, c, z;
		cin >> a >> b >> c >> z;
		a--; b--;
		G.AddEdge(a, b, c, z);
	}

	cout << G.MinCostMaxFlow() << '\n';

	return 0;
}