Pagini recente » Cod sursa (job #1087058) | Cod sursa (job #611516) | Cod sursa (job #611772) | Cod sursa (job #443033) | Cod sursa (job #2672217)
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
using namespace std;
ifstream fin("dijkstra.in");
ofstream fout("dijkstra.out");
const int NMAX = 50001;
#define infinit 2e9
struct State {
int node, cost;
bool operator < (const State & other) const {
/// State o sa fie integrat intr-un priority queue
/// ne propunem sa construim un min-heap de state-uri
return cost > other.cost;
}
};
vector < pair < int, int >> graph[NMAX];
int best_dist[NMAX];
int n, m, cost;
priority_queue < State > pq;
void read() {
int x, y;
fin >> n >> m;
for (int i = 1; i <= n; i++) {
best_dist[i] = infinit;
}
for (int i = 1; i <= m; ++i) {
fin >> x >> y >> cost;
graph[x].push_back({y, cost});
}
}
void dijkstra(int source) {
int node, cost;
best_dist[source] = 0;
pq.push({source, 0});
while (!pq.empty()) {
node = pq.top().node;
cost = pq.top().cost;
pq.pop();
if (best_dist[node] < cost) {
continue;
}
/// range-based for-loop
/// pentru fiecare 'neighbour' din graph[node]
/// executa ...
for (auto edge: graph[node]) {
int neighbour = edge.first;
int edge_cost = edge.second;
if (best_dist[neighbour] > cost + edge_cost) {
best_dist[neighbour] = cost + edge_cost;
pq.push({neighbour,best_dist[neighbour]});
}
}
}
}
void print() {
for (int i = 2; i <= n; ++i) {
if (best_dist[i] == infinit) {
fout << 0 << ' ';
} else {
fout << best_dist[i] << ' ';
}
}
}
int main() {
read();
dijkstra(1);
print();
return 0;
}