Cod sursa(job #2616464)

Utilizator TzigCurta Tudor Tzig Data 18 mai 2020 17:17:49
Problema Ciclu hamiltonian de cost minim Scor 100
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 1.98 kb
/*
#include <iostream>
#include <fstream>
#include <vector>

using namespace std;

ifstream f("hamilton.in");
ofstream g("hamilton.out");

const int NMAX = 20;
const int INF = 1e9;

int N,M;

int main()
{
    f>>N>>M;
    vector <vector <int> > X(N),cost(N,vector <int> (N,INF));
    while(M){
        int i,j,c;
        f>>i>>j>>c;
        X[j].push_back(i);
        cost[i][j]=c;
        M--;
    }
    vector <vector <int> > DP(1<<N, vector <int>(N,INF));
    DP[1][0]=0;
    for(int k=3;k<(1<<N);k+=2){
        for(int i=1;i<N;i++){
            if(k & (1<<i)){
                for(int j : X[i]){
                    DP[k][i]=min(DP[k][i],DP[k ^ (1<<i)][j]+cost[j][i]);
                }
            }
        }
    }
    int rez=INF;
    for(int i=1;i<N;i++){
        rez=min(rez,DP[(1<<N)-1][i]+cost[i][0]);
    }
    if(rez==INF){
        g<<"nu exista solutie";
    }else{
        g<<rez;
    }
    f.close();
    g.close();
    return 0;
}

*/

#include <bits/stdc++.h>
using namespace std;

ifstream fin("hamilton.in");
ofstream fout("hamilton.out");

int main() {
    int n, m; fin >> n >> m;
    vector<vector<int>> in(n), ad(n, vector<int>(n, 1e9));

    for (int i = 0; i < m; i++) {
        int x, y, z; fin >> x >> y >> z;
        in[y].push_back(x); ad[x][y] = z;
    }

    vector<vector<int>> dp(1 << n, vector<int>(n, 1e9));
    dp[1][0] = 0;

    int nrSubs = 1 << n;
    for (int subs = 3; subs < nrSubs; subs += 2) // Parcurg submulțimile.
        for (int i = 1; i < n; i++) // Parcurg biții din subs.
            if (subs & (1 << i)) // Testez dacă bitul e setat la 1.
                for (int j : in[i]) // Dacă da, parcurg nodurile j care intră în i.
                    dp[subs][i] = min(dp[subs][i], dp[subs ^ (1 << i)][j] + ad[j][i]); // Actualizez dp-ul.

    int sol = 1e9;
    for (int i = 1; i < n; i++)
        sol = min(sol, dp[nrSubs - 1][i] + ad[i][0]);
    if (sol == 1e9)
        fout << "Nu exista solutie\n";
    else
        fout << sol << '\n';

    fout.close();
    return 0;
}