Cod sursa(job #2590452)

Utilizator MarcGrecMarc Grec MarcGrec Data 27 martie 2020 23:14:18
Problema Cuplaj maxim in graf bipartit Scor 80
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 2.04 kb
#define MAX_NM 10000
#define LFT ((byte) 'L')
#define RIG ((byte) 'R')

#include <fstream>
#include <set>
#include <queue>
#include <utility>
#include <vector>
using namespace std;

using byte = unsigned char;

ifstream fin("cuplaj.in");
ofstream fout("cuplaj.out");

int n, m, e;
set<int> L[MAX_NM + 1], R[MAX_NM + 1];

// Noduri terminale.
queue<pair<int, byte>> Term;

vector<pair<int, int>> Rasp;

void Init();
void Cupleaza(int nodL, int nodR);

int main()
{
	fin >> n >> m >> e;
	for (int i = 0, u, v; i < e; ++i)
	{
		fin >> u >> v;
		L[u].insert(v);
		R[v].insert(u);
	}
	
	Init();
	
	bool ok;
	do
	{
	INCEPUT:
		while (!Term.empty())
		{
			int nod  = Term.front().first;
			byte tip = Term.front().second;
			Term.pop();
			
			auto& cont = (tip == LFT) ? L : R;
			if (cont[nod].size() == 1)
			{
				int nodL = (tip == LFT) ? nod : (*cont[nod].begin());
				int nodR = (tip == RIG) ? nod : (*cont[nod].begin());
				
				Cupleaza(nodL, nodR);
			}
		}
		
		ok = false;
		for (int i = 1; i <= n; ++i)
		{
			if (L[i].size() != 0)
			{
				ok = true;
				Cupleaza(i, *L[i].begin());
				if (!Term.empty()) { goto INCEPUT; }
			}
		}
	} 
	while (ok);
	
	fout << Rasp.size() << '\n';
	for (size_t i = 0; i < Rasp.size(); ++i)
	{
		fout << Rasp[i].first << ' ' << Rasp[i].second << '\n';
	}
	
	fin.close();
	fout.close();
	return 0;
}

void Init()
{
	for (int i = 1; i <= n; ++i)
	{
		if (L[i].size() == 1) { Term.emplace(i, LFT); }
	}
	for (int i = 1; i <= m; ++i)
	{
		if (R[i].size() == 1) { Term.emplace(i, RIG); }	
	}
}

void Cupleaza(int nodL, int nodR)
{
	Rasp.emplace_back(nodL, nodR);
	
	for (int vecin : L[nodL])
	{
		if (vecin != nodR)
		{
			R[vecin].erase(nodL);
			
			if (R[vecin].size() == 1)
			{
				Term.emplace(vecin, RIG);
			}
		}
	}
	for (int vecin : R[nodR])
	{
		if (vecin != nodL)
		{
			L[vecin].erase(nodR);
			
			if (L[vecin].size() == 1)
			{
				Term.emplace(vecin, LFT);
			}
		}
	}
	
	L[nodL].clear();
	R[nodR].clear();
}