Pagini recente » Cod sursa (job #1636277) | Cod sursa (job #1042252) | Cod sursa (job #1636683) | Cod sursa (job #1475837) | Cod sursa (job #2532220)
#pragma GCC optimize ("O2")
#include <fstream>
#include <vector>
#include <queue>
using namespace std;
ifstream fin("ubuntzei.in");
ofstream fout("ubuntzei.out");
const int MAXN = 2001;
const int MAXK = 17;
const int MAXS = (1 << 15);
int n, m, k, fr[MAXN], predist[MAXK][MAXK], dp[MAXK][MAXS], d[MAXN], sol = 1e9;
vector<pair<int, int>> g[MAXN];
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
int distance(int A, int B) {
fill(d, &d[MAXN], 1e9);
d[A] = 0;
pq.push({0, A});
while(!pq.empty()) {
while(!pq.empty() && pq.top().first > d[pq.top().second])
pq.pop();
if(pq.empty()) break;
int node = pq.top().second;
pq.pop();
for(auto i : g[node])
if(d[i.first] > d[node] + i.second) {
d[i.first] = d[node] + i.second;
pq.push({d[i.first], i.first});
}
}
return d[B];
}
void dijkstra(int A, int i) {
fill(d, &d[MAXN], 1e9);
d[A] = 0;
pq.push({0, A});
while(!pq.empty()) {
while(!pq.empty() && pq.top().first > d[pq.top().second])
pq.pop();
if(pq.empty()) break;
int node = pq.top().second;
pq.pop();
for(auto i : g[node])
if(d[i.first] > d[node] + i.second) {
d[i.first] = d[node] + i.second;
pq.push({d[i.first], i.first});
}
}
for(int j = 0; j <= k + 1; ++j)
if(i != j)
predist[i][j] = predist[j][i] = d[fr[j]];
}
int main() {
ios::sync_with_stdio(0);
fin.tie(0);
fout.tie(0);
fin >> n >> m >> k;
for(int i = 1; i <= k; ++i) fin >> fr[i];
for(int i = 1, x, y, w; i <= m; ++i) {
fin >> x >> y >> w;
g[x].push_back({y, w});
g[y].push_back({x, w});
}
if(k == 0) {
fout << distance(1, n);
return 0;
}
fr[0] = 1;
fr[k + 1] = n;
for(int i = 1; i <= k; ++i)
dijkstra(fr[i], i);
for(int i = 0; i < k; ++i)
dp[i + 1][1 << i] = predist[0][i + 1];
for(int i = 1; i < (1 << k); ++i)
for(int x = 0; x < k; ++x)
if(i & (1 << x))
for(int j = 0; j < k; ++j)
if(i & (1 << j) && x != j) {
if(dp[j + 1][i] == 0) dp[j + 1][i] = 1e9;
dp[j + 1][i] = min(dp[j + 1][i], dp[x + 1][i ^ (1 << j)] + predist[x + 1][j + 1]);
}
for(int i = 1; i <= k; ++i)
sol = min(sol, dp[i][(1 << k) - 1] + predist[i][k + 1]);
fout << sol;
return 0;
}