Pagini recente » Cod sursa (job #2278611) | Cod sursa (job #929748) | Cod sursa (job #1581191) | Cod sursa (job #1974211) | Cod sursa (job #2528782)
/// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
#include <iostream>
#include <limits.h>
#include <stdio.h>
#include <fstream>
using namespace std;
ifstream f ("dijkstra.in");
ofstream g ("dijkstra.out");
// Number of vertices in the graph
int N,l,i,c,nm,graph[55][55]={{0},{0}},d;
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool viz[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 1; v <= N; v++)
if (viz[v] == false && dist[v] <= min)
{min = dist[v]; min_index = v;}
return min_index;
}
// A utility function to print the constructed distance array
int printSolution(int dist[])
{
//printf("Vertex \t\t Distance from Source\n");
for (int i = 2; i <= N; i++)
g<<dist[i]<<" ";
}
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[55][55], int src)
{
int dist[N]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool viz[N]; // sptSet[i] will be true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 1; i <= N; i++)
dist[i] = INT_MAX, viz[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 1; count <= N - 1; count++) {
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, viz);
// Mark the picked vertex as processed
viz[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 1; v <= N; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!viz[v] && graph[u][v]>=1 && dist[u] != INT_MAX
&& dist[u] + graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist);
}
// driver program to test above function
int main()
{f>>N>>nm;
for(i=1;i<=nm;i++)
{f>>l>>c>>d;
graph[l][c]=d;
}
dijkstra(graph, 1);
return 0;
}