Cod sursa(job #2418928)

Utilizator Alex_BubBuburuzan Alexandru Alex_Bub Data 6 mai 2019 20:46:47
Problema Algoritmul lui Gauss Scor 40
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 1.82 kb
#include <fstream>
#include <cmath>
#include <iomanip>

using namespace std;

ifstream fin("gauss.in");
ofstream fout("gauss.out");

const int NMax = 300; const double E = 0.0000001;

double A[NMax + 5][NMax + 5], Sol[NMax + 5], T;
int N, M;

bool Solve()
{
    int i = 1, j = 1, k;

    while(i <= N && j <= M)
    {
        if(A[i][j] == 0)
        {
            for(k = i + 1; k <= N; k++)
                if(A[k][j] != 0)
                {
                    swap(A[i], A[k]);
                    break;
                }

            if(k == N + 1)
            {
                j++;
                continue;
            }
        }
        for(k = i + 1; k <= N; k++)
        {
            if(A[k][j] == 0) continue;
            T = A[i][j] / A[k][j];

            for(int c = j; c <= M + 1; c++)
            {
                A[k][c] = T * A[k][c] - A[i][c];
                if(fabs(A[k][c]) < E) A[k][c] = 0;
            }
        }
        i++, j++;
    }

    for(int i = N; i > 0; i--)
        for(int j = 1; j <= M + 1; j++)
            if(A[i][j] != 0)
            {
                if(j == M + 1) return 0;
                Sol[j] = A[i][M + 1];

                for(int k = j + 1; k <= M; k++)
                    Sol[j] -= Sol[k] * A[i][k];

                Sol[j] /= A[i][j];
                break;
            }
    return 1;
}

int main()
{
    fin >> N >> M;

    for(int i = 1; i <= N; i++)
        for(int j = 1; j <= M + 1; j++)
        {
            fin >> A[i][j];
            if(fabs(A[i][j]) < E) A[i][j] = 0;
        }

    if(Solve() == 0)
        fout << "Imposibil\n";
    else
    {
        for(int i = 1; i <= M; i++)
            fout << fixed << setprecision(10) << Sol[i] << " ";
    }
    fin.close();
    fout.close();

    return 0;
}