Cod sursa(job #2376938)

Utilizator Horia14Horia Banciu Horia14 Data 8 martie 2019 19:13:09
Problema Algoritmul lui Dijkstra Scor 100
Compilator cpp-64 Status done
Runda Arhiva educationala Marime 1.83 kb
#include<cstdio>
#include<vector>
#define MAX_N 50000
#define oo 0x3f3f3f3f
using namespace std;

vector<pair<int,int> >g[MAX_N+1];
int dist[MAX_N+1], h[MAX_N+1], pos[MAX_N+1], n, m, heapSize;

void readGraph() {
    int x, y, c, i;
    FILE* fin = fopen("dijkstra.in","r");
    fscanf(fin,"%d%d",&n,&m);
    for(i = 0; i < m; i++) {
        fscanf(fin,"%d%d%d",&x,&y,&c);
        //printf("%d %d %d\n",x,y,c);
        g[x].push_back(make_pair(y,c));
    }
    fclose(fin);
}

inline void Swap(int i, int j) {
    int aux = h[i];
    h[i] = h[j];
    h[j] = aux;
    aux = pos[h[i]];
    pos[h[i]] = pos[h[j]];
    pos[h[j]] = aux;
}

void heapDown(int i) {
    int l, r, p;
    l = 2 * i;
    r = 2 * i + 1;
    if(l <= heapSize && dist[h[l]] < dist[h[i]])
        p = l;
    else p = i;
    if(r <= heapSize && dist[h[r]] < dist[h[p]])
        p = r;
    if(p != i) {
        Swap(p,i);
        heapDown(p);
    }
}

void heapUp(int i) {
    while(dist[h[i/2]] > dist[h[i]]) {
        Swap(i,i/2);
        i >>= 1;
    }
}

void Dijkstra(int x) {
    int node;
    for(int i = 1; i <= n; i++) {
        dist[i] = oo;
        h[i] = pos[i] = i;
    }
    dist[x] = 0;
    Swap(1,x);
    heapSize = n;
    for(int j = 1; j <= n - 1; j++) {
        node = h[1];
        Swap(1,heapSize);
        heapSize--;
        heapDown(1);
        for(auto i : g[node]) {
            if(dist[i.first] > dist[node] + i.second) {
                dist[i.first] = dist[node] + i.second;
                heapUp(pos[i.first]);
            }
        }
    }
}

void printDistances() {
    FILE* fout = fopen("dijkstra.out","w");
    for(int i = 2; i <= n; i++)
        if(dist[i] != oo)
            fprintf(fout,"%d ",dist[i]);
        else fprintf(fout,"0 ");
    fprintf(fout,"\n");
    fclose(fout);
}


int main() {
    readGraph();
    Dijkstra(1);
    printDistances();
    return 0;
}