Pagini recente » Cod sursa (job #1533251) | Cod sursa (job #3185894) | Cod sursa (job #2978858) | Cod sursa (job #1589418) | Cod sursa (job #2329883)
#include <fstream>
using namespace std;
ifstream fin("rmq.in");
ofstream fout("rmq.out");
const int NMAX=100000;
int rmq[25][NMAX+5];
//declar rmq[log N][N];
int p2[NMAX+5];
//pe linia i vom avea intervalele de la j la j+2^(i-1)
//relatia de recurenta rmq[i][j]=min(rmq[i-1][j], rmq[i-1][j+2^(i-1)])
int main()
{
int n, k, i, j;
fin>>n>>k;
p2[1]=0;
for(i=2;i<=n;i++)
p2[i]=p2[i>>1]+1;
//putrea de 2 maxima
for(i=1;i<=n;i++)
fin>>rmq[0][i];
for(i=1;i<=p2[n];i++)
{
//(1<<i)- operatii pe biti si inseamna 1*(2^i)
for(j=1;j<=n-(1<<i)+1;j++)
rmq[i][j]=min(rmq[i-1][j], rmq[i-1][j+(1<<(i-1))]);
}
for(int t=1;t<=k;t++)
{
fin>>i>>j;
int p=p2[j-i+1];
//aflam acel k-cea mai mare putere a lui 2 mai mica sau egala cu diferenta
//pt un queriy de i, j vom avea relatia
//min(i, j)=min(rmq[k][i], rmq[k][j-2^k+1])
//unde 2^k<=(j-i+1)
fout<<min(rmq[p][i], rmq[p][j-(1<<p)+1])<<"\n";
}
return 0;
}