#include <bits/stdc++.h>
#define maxN 802
#define INF 0x3fffffff
#define ll long long
#define ld long double
#define pid pair <int, double>
#define e 1e-9
using namespace std;
FILE *fin = freopen("poligon.in", "r", stdin);
FILE *fout = freopen("poligon.out", "w", stdout);
struct Point
{
int x, y;
bool operator != (const Point &p) const
{
return (x != p.x || y != p.y);
}
} v[maxN];
int b[maxN];
vector < pid > I[maxN];
/// Given three colinear points p, q, r, the function checks if
/// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
return (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y));
}
/// To find orientation of ordered triplet (p, q, r).
int orientation(Point p, Point q, Point r)
{
ll det = 1LL * (q.y - p.y) * (r.x - q.x) - 1LL * (q.x - p.x) * (r.y - q.y);
if (det == 0) return 0; // colinear
return (det > 0)? 1: 2; // clock or counterclock wise
}
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
/// Find the four orientations needed for general and
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
/// General case
if (o1 != o2 && o3 != o4)
return true;
/// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true;
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true;
return false; /// Doesn't fall in any of the above cases
}
bool isInside1(Point p, int n)
{
Point extreme = {INF, p.y};
int cnt = 0;
for (int i = 0; i < n; ++ i)
{
int j = (i + 1) % n;
if (doIntersect(v[i], v[j], p, extreme))
{
if (orientation(v[i], p, v[j]) == 0)
return onSegment(v[i], p, v[j]);
if ((v[i].y > v[j].y && onSegment(p, v[i], extreme)) ||
(v[i].y <= v[j].y && onSegment(p, v[j], extreme)))
++ cnt;
if (!onSegment(p, v[i], extreme) && !onSegment(p, v[j], extreme))
++ cnt;
}
}
return (cnt & 1);
}
///* -------------------------- O(N^2logN + MlogN) -------------------------- */
ld intersPoint(int i, int j, int p)
{
ld ai = -(v[j].y - v[i].y),
bi = (v[j].x - v[i].x),
ci = (ld)v[i].x * v[j].y - (ld)v[i].y * v[j].x;
return -(ai * b[p] + ci) / bi;
}
bool cmp(const pid &a, const pid &b)
{
ld y1 = a.second + v[a.first].y, y2 = b.second + v[b.first].y;
if (fabs(y1 - y2) < e)
return a.first < b.first;
return y1 < y2;
}
void getInters(int p, int n)
{
Point A = {b[p], -INF}, B = {b[p], INF};
for (int i = 0; i < n; ++ i)
{
int j = (i + 1) % n;
if (doIntersect(A, B, v[i], v[j]))
{
if (onSegment(A, v[i], B) && v[i].y < v[j].y) continue;
if (onSegment(A, v[j], B) && v[j].y < v[i].y) continue;
ld Y;
if (v[i].x != v[j].x)
Y = intersPoint(i, j, p);
else
Y = (ld)max(v[i].y, v[j].y);
I[p].push_back(pid{i, Y});
}
}
sort(I[p].begin(), I[p].end(), cmp);
}
int bandBs(int B, Point P)
{
int i = 0, p = 1;
while (p < B)
p <<= 1;
while (p)
{
if (i + p < B && b[i + p] <= P.x)
i += p;
p >>= 1;
}
return i;
}
bool isInside2(int n, Point P, int id)
{
int i = -1, p = 1, sz = I[id].size();
while (p < sz)
p <<= 1;
while (p)
{
if (i + p < sz && I[id][i + p].second <= e + P.y)
i += p;
p >>= 1;
}
if (!sz) return false;
if (fabs(I[id][i].second - P.y) < e)
return true;
return ((i + 1) & 1);
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 0; i < n; ++ i)
{
scanf("%d%d", &v[i].x, &v[i].y);
b[i] = v[i].x;
}
int ans = 0;
if (m <= 0)
{
while (m --)
{
Point P;
scanf("%d%d", &P.x, &P.y);
ans += isInside1(P, n);
}
}
else
{
sort(b, b + n);
int B = 1;
getInters(0, n);
for (int i = 1; i < n; ++ i)
if (b[i] != b[i - 1])
{
b[B] = b[i];
getInters(B, n);
++ B;
}
while (m --)
{
Point P;
scanf("%d%d", &P.x, &P.y);
int band = bandBs(B, P);
ans += isInside2(n, P, band);
}
}
printf("%d\n", ans);
return 0;
}