#include <bits/stdc++.h>
#define maxN 802
#define INF 0x3fffffff
#define ll long long
using namespace std;
FILE *fin = freopen("poligon.in", "r", stdin);
FILE *fout = freopen("poligon.out", "w", stdout);
struct Point
{
int x, y;
bool operator != (const Point &p) const
{
return (x != p.x || y != p.y);
}
} v[maxN];
/// Given three colinear points p, q, r, the function checks if
/// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
return (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y));
}
/// To find orientation of ordered triplet (p, q, r).
int orientation(Point p, Point q, Point r)
{
ll det = 1LL * (q.y - p.y) * (r.x - q.x) - 1LL * (q.x - p.x) * (r.y - q.y);
if (det == 0) return 0; // colinear
return (det > 0)? 1: 2; // clock or counterclock wise
}
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
/// Find the four orientations needed for general and
int o1 = orientation(p1, q1, p2);
int o2 = orientation(p1, q1, q2);
int o3 = orientation(p2, q2, p1);
int o4 = orientation(p2, q2, q1);
/// General case
if (o1 != o2 && o3 != o4)
return true;
/// Special Cases
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 && onSegment(p1, p2, q1)) return true;
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true;
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 && onSegment(p2, p1, q2)) return true;
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true;
return false; /// Doesn't fall in any of the above cases
}
bool isInside(Point p, int n)
{
Point extreme = {INF, p.y};
int cnt = 0;
for (int i = 0; i < n; ++ i)
{
int j = (i + 1) % n;
if (doIntersect(v[i], v[j], p, extreme))
{
if (orientation(v[i], p, v[j]) == 0)
{
bool On = onSegment(v[i], p, v[j]);
if (On && p != v[i] && p != v[j])
return true;
if (!On)
return false;
// while(1);
cnt += (p.y == max(v[i].y, v[j].y));
}
else
++ cnt;
}
}
return (cnt & 1);
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 0; i < n; ++ i)
scanf("%d%d", &v[i].x, &v[i].y);
int ans = 0;
while (m --)
{
Point P;
scanf("%d%d", &P.x, &P.y);
ans += isInside(P, n);
}
printf("%d\n", ans);
return 0;
}