Cod sursa(job #2209948)

Utilizator jurjstyleJurj Andrei jurjstyle Data 5 iunie 2018 10:40:59
Problema Flux maxim Scor 60
Compilator cpp Status done
Runda Arhiva educationala Marime 3.01 kb
// C++ program for implementation of Ford Fulkerson algorithm
#include <fstream>
#include <limits.h>
#include <string.h>
#include <queue>
using namespace std;


ifstream f("maxflow.in");
ofstream g("maxflow.out");

int Graph[1002][1002];
int rGraph[1002][1002];
int parent[1002];
int n, m;

// Number of vertices in given graph
#define V 6

/* Returns true if there is a path from source 's' to sink 't' in
  residual graph. Also fills parent[] to store the path */
bool bfs(int s, int t)
{
    // Create a visited array and mark all vertices as not visited
    bool visited[n + 1];
    memset(visited, 0, sizeof(visited));

    // Create a queue, enqueue source vertex and mark source vertex
    // as visited
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;

    // Standard BFS Loop
    while (!q.empty())
    {
        int u = q.front();
        q.pop();

        for (int v=1; v <= n; v++)
        {
            if (visited[v]==false && rGraph[u][v] > 0)
            {
                q.push(v);
                parent[v] = u;
                visited[v] = true;
            }
        }
    }

    // If we reached sink in BFS starting from source, then return
    // true, else false
    return (visited[t] == true);
}

// Returns the maximum flow from s to t in the given graph
int fordFulkerson(int s, int t)
{
    int u, v;

    // Create a residual graph and fill the residual graph with
    // given capacities in the original graph as residual capacities
    // in residual graph

    // Residual graph where rGraph[i][j] indicates
    // residual capacity of edge from i to j (if there
    // is an edge. If rGraph[i][j] is 0, then there is not)
    for (u = 1; u <= n; u++)
        for (v = 1; v <= n; v++)
             rGraph[u][v] = Graph[u][v];

     // This array is filled by BFS and to store path

    int max_flow = 0;  // There is no flow initially

    // Augment the flow while tere is path from source to sink
    while (bfs(s, t))
    {
        // Find minimum residual capacity of the edges along the
        // path filled by BFS. Or we can say find the maximum flow
        // through the path found.
        int path_flow = INT_MAX;
        for (v=t; v!=s; v=parent[v])
        {
            u = parent[v];
            path_flow = min(path_flow, rGraph[u][v]);
        }

        // update residual capacities of the edges and reverse edges
        // along the path
        for (v=t; v != s; v=parent[v])
        {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }

        // Add path flow to overall flow
        max_flow += path_flow;
    }

    // Return the overall flow
    return max_flow;
}

// Driver program to test above functions
int main()
{
    f >> n >> m;
    for (int i = 0; i < m; ++i)
    {
        int x, y, c;
        f >> x >> y >> c;
        Graph[x][y] += c;
    }
    g << fordFulkerson(1, n);
    return 0;
}