//Longest Path Decomposition, O(N * sqrt(N) * log N)
#include <iostream>
#include <fstream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
ifstream in("heavypath.in");
ofstream out("heavypath.out");
#define ll long long
#define ull unsigned long long
#define pb push_back
const int NMax = 1e5 + 5;
const int arbMax = 4*NMax;
int N,M,nrChain;
int value[NMax], depth[NMax], dist[NMax], chainOf[NMax],
chainOffset[NMax], chainDim[NMax], chainDad[NMax], chainDepth[NMax],
aint[arbMax];
vector<int> v[NMax],chain[NMax];
// value[i] - valoarea initiala a nodului i;
// depth[i] - adancimea nodului i in arbore;
// dist[i] - lungime (in noduri) a celui mai lung drum care porneste din nodul i si se termina intr-o frunza;
// chainOf[i] - indexul lantului in care se afla nodul i;
// chainOffset[i] - un offset pentru lantul cu index i,
// important pentru a putea reprezenta arborele de intervale al fiecarui lant in vectorul aint;
// chainDim[i] - numarul de noduri in lantul i;
// chainDad[i] - nodul tata pentru lantul i;
// chainDepth[i] - adancimea lantului (a nodului tata) pentru lantul i;
// aint - vector in care se reprezinta arborii de intervale pentru fiecare lant;
void read();
void getChains();
void doOperations();
void dfs(int);
void build(int,int,int,int);
void update(int,int,int,int,int,int);
int query(int,int,int,int,int,int);
// read - citeste valorile din input;
// dfs - creeaza lanturile printr-o parcurgere in adancime;
// getChains - finiseaza lanturile obtinute prin functia dfs;
// doOperations() - realizeaza fiecare din cele M operatii;
// build(node,st,dr,id) - initializeaza valorea nodurilor din aint corespunzatoare lantului id;
// update(node,st,dr,off,pos,val) - schimba valorea unui nod frunza din aint;
// query(node,st,dr,off,a,b) - return-eaza maximul pe un interval de noduri din acelasi lant;
int main() {
read();
getChains();
doOperations();
in.close();out.close();
return 0;
}
void read() {
in>>N>>M;
for (int i=1;i <= N;++i) {
in>>value[i];
}
for (int i=1;i < N;++i) {
int x,y;
in>>x>>y;
v[x].pb(y);
v[y].pb(x);
}
}
void getChains() {
depth[1] = 1;
dfs(1);
for (int i=1;i <= nrChain;++i) {
reverse(chain[i].begin(),chain[i].end());
// 4 * dim[i] - asigura suficient spatiu pentru a reprezenta lantul i;
chainOffset[i] = chainOffset[i-1] + 4 * chainDim[i-1];
build(1,1,chainDim[i],i);
}
}
void dfs(int node) {
bool leaf = true;
int son = 0;
for (int nxt : v[node]) {
if (depth[nxt]) {
continue;
}
depth[nxt] = depth[node] + 1;
dfs(nxt);
leaf = false;
if (!son) {
son = nxt;
}
else if (dist[son] < dist[nxt]) { // se cauta lantul maxim;
son = nxt;
}
}
if (leaf) {
dist[node] = 1;
chain[++nrChain].pb(node);
chainOf[node] = nrChain;
chainDim[nrChain] = 1;
return;
}
dist[node] = dist[son] + 1;
chain[ chainOf[son] ].pb(node);
chainOf[node] = chainOf[son];
++chainDim[ chainOf[node] ];
for (int nxt : v[node]) {
if (depth[nxt] < depth[node] || nxt == son) {
continue;
}
chainDad[ chainOf[nxt] ] = node;
chainDepth[ chainOf[nxt] ] = depth[node];
}
}
void doOperations() {
while (M--) {
int tip,x,y;
in>>tip>>x>>y;
if (!tip) {
update(1,1,chainDim[ chainOf[x] ],chainOffset[ chainOf[x] ], depth[x] - chainDepth[ chainOf[x] ], y);
}
else {
int mx = -1;
while (chainOf[x] != chainOf[y]) {
if (chainDepth[ chainOf[x] ] < chainDepth[ chainOf[y] ]) {
swap(x,y);
}
mx = max(mx, query(1,1,chainDim[ chainOf[x] ], chainOffset[ chainOf[x] ], 1, depth[x] - chainDepth[ chainOf[x] ]));
x = chainDad[ chainOf[x] ];
}
if (depth[x] > depth[y]) {
swap(x,y);
}
mx = max(mx, query(1,1,chainDim[ chainOf[x] ], chainOffset[ chainOf[x] ], depth[x] - chainDepth[ chainOf[x] ], depth[y] - chainDepth[ chainOf[x] ]));
out<<mx<<'\n';
}
}
}
#define mij ((st+dr)>>1)
#define fs (node<<1)
#define ss (fs+1)
void build(int node,int st,int dr,int id) {
if (st == dr) {
aint[node + chainOffset[id]] = value[ chain[id][st-1] ];
return;
}
build(fs,st,mij,id);
build(ss,mij+1,dr,id);
aint[node + chainOffset[id]] = max(aint[fs + chainOffset[id]],aint[ss + chainOffset[id]]);
}
void update(int node,int st,int dr,int off,int pos,int value) {
if (st == dr) {
aint[node + off] = value;
return;
}
if (pos <= mij) {
update(fs,st,mij,off,pos,value);
}
else {
update(ss,mij+1,dr,off,pos,value);
}
aint[node + off] = max(aint[fs + off],aint[ss + off]);
}
int query(int node,int st,int dr,int off,int a,int b) {
if (a <= st && dr <= b) {
return aint[node + off];
}
int ret = -1;
if (a <= mij) {
ret = query(fs,st,mij,off,a,b);
}
if (mij+1 <= b) {
ret = max(ret,query(ss,mij+1,dr,off,a,b));
}
return ret;
}