#include<cstdio>
#include<queue>
#define MAX_N 350
#define oo 2000000000
using namespace std;
int n, m, S, D, k, result, costMin;
int C[MAX_N+1][MAX_N+1], F[MAX_N+1][MAX_N+1], Cost[MAX_N+1][MAX_N+1];
int dist[MAX_N+1], h[MAX_N+1], pos[MAX_N+1], T[MAX_N+1];
bool used[MAX_N+1];
queue<int>Q;
struct Node
{
int val;
Node* next;
};
Node* L[MAX_N+1];
inline int minim(int x, int y)
{
if(x < y) return x;
return y;
}
inline void insertBack(int x, int y)
{
Node* elem = new Node;
elem->val = y;
elem->next = L[x];
L[x] = elem;
}
void BellmanFord(int x)
{
int i, node;
Node* p;
for(i=1; i<=n; i++)
dist[i] = oo;
dist[x] = 0;
Q.push(x);
used[x] = true;
while(!Q.empty())
{
node = Q.front();
Q.pop();
used[node] = false;
p = L[node];
while(p != NULL)
{
if(F[node][p->val] < C[node][p->val] && dist[p->val] > dist[node] + Cost[node][p->val])
{
dist[p->val] = dist[node] + Cost[node][p->val];
if(!used[p->val])
{
Q.push(p->val);
used[p->val] = true;
}
}
p = p->next;
}
}
result = dist[D];
}
inline void Swap(int i, int j)
{
int aux;
aux = h[i];
h[i] = h[j];
h[j] = aux;
aux = pos[h[i]];
pos[h[i]] = pos[h[j]];
pos[h[j]] = aux;
}
void heapDown(int i)
{
int l, r;
if(2*i > k) return;
l = dist[h[2*i]];
if(2*i+1 <= k)
r = dist[h[2*i+1]];
else r = l + 1;
if(l < r)
{
if(dist[h[i]] <= l) return;
Swap(i,2*i);
heapDown(2*i);
}
else
{
if(dist[h[i]] <= r) return;
Swap(i,2*i+1);
heapDown(2*i+1);
}
}
void heapUp(int i)
{
if(dist[h[i/2]] <= dist[h[i]]) return;
Swap(i,i/2);
heapUp(i/2);
}
bool Dijkstra(int x)
{
int i, node;
Node* p;
for(node = 1; node <= n; node++)
if(dist[node] != oo)
{
p = L[node];
while(p != NULL)
{
if(dist[p->val] != oo)
Cost[node][p->val] += dist[node] - dist[p->val];
p = p->next;
}
}
for(i=1; i<=n; i++)
{
dist[i] = oo; T[i] = 0;
h[i] = pos[i] = i;
}
dist[x] = 0;
Swap(1,S);
k = n;
while(k > 0&& dist[h[1]] != oo)
{
node = h[1];
Swap(1,k);
k--;
heapDown(1);
p = L[node];
while(p != NULL)
{
if(F[node][p->val] < C[node][p->val] && dist[p->val] > dist[node] + Cost[node][p->val])
{
dist[p->val] = dist[node] + Cost[node][p->val];
T[p->val] = node;
heapUp(pos[p->val]);
}
p = p->next;
}
}
if(dist[D] != oo) return 1;
return 0;
}
int main()
{
int i, x, y, cap, cost, flow, node;
FILE *fin, *fout;
fin = fopen("fmcm.in","r");
fout = fopen("fmcm.out","w");
fscanf(fin,"%d%d%d%d",&n,&m,&S,&D);
for(i=1; i<=m; i++)
{
fscanf(fin,"%d%d%d%d",&x,&y,&cap,&cost);
insertBack(x,y);
insertBack(y,x);
C[x][y] = cap;
Cost[x][y] = cost;
Cost[y][x] = -cost;
}
BellmanFord(S);
while(Dijkstra(S))
{
flow = oo;
for(node = D; node != S; node = T[node])
flow = minim(flow,C[T[node]][node] - F[T[node]][node]);
for(node = D; node != S; node = T[node])
{
F[T[node]][node] += flow;
F[node][T[node]] -= flow;
}
result += dist[D];
costMin += flow * result;
}
fprintf(fout,"%d\n",costMin);
fclose(fin);
fclose(fout);
return 0;
}