Pagini recente » Cod sursa (job #644278) | Cod sursa (job #2506308) | Borderou de evaluare (job #1566694) | Cod sursa (job #3278276) | Cod sursa (job #1988329)
#include <vector>
#include <iostream>
#include <queue>
#include <set>
#include <cassert>
#include <limits>
#include <algorithm>
#include <map>
using namespace std;
class ConvexSet {
using T = long long;
struct SetElem {
T a, b;
mutable const SetElem* next = nullptr;
bool is_query;
SetElem(T query_x) : b(query_x), is_query(true) {}
SetElem(T a, T b) : a(a), b(b), is_query(false) {}
T eval(T x) const {
return a * x + b;
}
bool operator< (const SetElem &rhs) const {
assert(!rhs.is_query);
if (is_query) {
if (rhs.next == nullptr) return true;
return rhs.eval(b) > rhs.next->eval(b);
} else return (a != rhs.a) ? a < rhs.a : b < rhs.b;
}
private: SetElem() {}
};
set<SetElem> data;
bool is_bad(set<SetElem>::iterator it) {
if (it == data.begin() || next(it) == data.end())
return false;
auto prv = prev(it), nxt = next(it);
return (it->b - prv->b) * (nxt->a - it->a)
<= (it->b - nxt->b) * (prv->a - it->a);
}
void erase(set<SetElem>::iterator it) {
if (it != data.begin())
prev(it)->next = it->next;
data.erase(it);
}
public:
void Insert(T slope, T intercept) {
auto p = data.insert(SetElem(slope, intercept));
if (!p.second) return;
auto it = p.first;
if (it != data.begin()) prev(it)->next = &(*it);
if (next(it) != data.end()) it->next = &(*next(it));
if (is_bad(it)) erase(it);
else {
while (it != data.begin()) {
auto prv = prev(it);
if (is_bad(prv)) {
erase(prv);
} else break;
}
while (next(it) != data.end()) {
auto nxt = next(it);
if (is_bad(nxt)) {
erase(nxt);
} else break;
}
}
}
T EvaluateMax(T x) {
SetElem ret(x);
auto it = data.upper_bound(ret);
return it->eval(x);
}
};
int main() {
freopen("euro.in", "r", stdin);
freopen("euro.out", "w", stdout);
int n, t;
cin >> n >> t;
// dp[i] = max_j(dp[j] + (gain[i] - gain[j]) * i - t)
// dp[i] = max_j(dp[j] - gain[j] * i + gain[i] * i - t)
// dp[i] = gain[i] * i - t + max_j(dp[j] - gain[j] * i)
// solution: keep stack of linear functions of type -gain[j] * X + dp[j]
// no monotony -> need set
ConvexSet fun_set;
fun_set.Insert(0, 0);
long long ans = 0, gain = 0;
for (int i = 1; i <= n; ++i) {
int x; cin >> x; gain += x;
ans = fun_set.EvaluateMax(i) + gain * i - t;
fun_set.Insert(-gain, ans);
}
cout << ans << endl;
return 0;
}