Pagini recente » Cod sursa (job #3253945) | Cod sursa (job #2064564) | Clasament 14_martie_simulare_oji_2024_clasa_10 | Cod sursa (job #1253318) | Cod sursa (job #1756084)
#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <ctime>
#include <cstdlib>
#include <fstream>
using namespace std;
#define ll long long int
#define pb push_back
ifstream in ("hashuri.in");
ofstream out("hashuri.out");
///////////////////////////////
///////////
/////////// Hashuri diviziune
///////////
//////////////////////////////
const int M =195931;
const float A = 0.6180339887;
vector<int> v[M];
const int maxByte = ( 1 << 8 )-1;
const int byteNr = sizeof(int);
int getRandom()
{
srand (time(NULL));
return rand()%M;
}
int getIthByte(int &n,int &i)
{
return ( n >> ( i * 8) ) & maxByte;
}
int getSum(int &x)
{
int hx = 0;
for(int i = 0 ; i < byteNr; i++)
hx += ( getRandom() * getIthByte(x,i) % M);
}
int H(int k )
{
return getSum(k);
//return trunc(M*fmod(k*A,1)); //metoda inmultirii
//return k % M; //metoda diviziunii
}
void add(int &e)//adaugam elementul in multime
{
int hx = H(e);
if ( find(v[ hx ].begin(),v[hx].end(),e) != v[ hx].end())
return;
v[ hx ].pb(e);
}
void erase(int &e)//stergem elementul din multime
{
int hx = H(e);
if (find(v[ hx ].begin(),v[hx ].end(),e) != v[ hx ].end())
v[ hx ].erase(find(v[ hx ].begin(),v[hx ].end(),e));
}
int find(int e)//returnam 1 daca este in multime sau 0 altfel
{
int hx = H(e);
if (find(v[ hx ].begin(),v[hx ].end(),e) !=v[hx ].end())
return 1;
return 0;
}
///////////////////////////////
///////////
/////////// Arbori binari de cautari echilibirati log(n) -pe operatie
///////////
//////////////////////////////
unordered_set<int> tree;
void addTree(int x)
{
tree.insert(x);
}
void removeTree(int x)
{
tree.erase(x);
}
int isInTree(int x)
{
return (tree.find(x) !=tree.end())?1:0;
}
int main()
{
int n,x,op;
in >> n;
for(int i = 0 ; i < n ; i++)
{
in >> op >> x;
switch(op)
{
case 1:
add(x);
//addTree(x);
break;
case 2:
erase(x);
//removeTree(x);
break;
case 3:
out<<find(x)<<'\n' ;
//out<<isInTree(x)<<'\n';
break;
}
}
return 0;
}