Pagini recente » Cod sursa (job #2218818) | Cod sursa (job #3205836) | Cod sursa (job #1772713) | Cod sursa (job #1700416) | Cod sursa (job #1554348)
#include <iostream>
#include <fstream>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define MAX 50001
#define INF 0x3f3f3f3f
using namespace std;
ifstream f("bellmanford.in");
ofstream g("bellmanford.out");
vector < pair < int , int > > G[MAX] ;
vector < pair < int , int > >::iterator j;
int USED[MAX] ;
int D[MAX];
queue < int > Q;
int n,m,x,y,z,start;
void bellman_ford( int i )
{
memset( D , INF , sizeof D);
D[i] = 0;
USED[i] = true;
Q.push(i);
int nod;
while(!Q.empty())
{
nod = Q.front();
Q.pop();
USED[nod] = false;
for ( j = G[nod].begin(); j != G[nod].end(); j++ )
{
if ( D[ (*j).first ] > D[nod] + (*j).second )
{
D[ (*j).first ] = D[nod] + (*j).second;
if( !USED[ (*j).first ] )
{
Q.push( (*j).first);
USED[ (*j).first ] = true;
}
}
}
}
}
int main()
{
f >> n >> m;
for ( ; m-- ; )
{
f >> x >> y >> z;
G[x].pb(mp (y,z) );
}
start = 1;
bellman_ford(start);
for (int i = 2; i <= n ; ++i )
g << D[i] << " " ;
return 0;
} /*
#include <fstream>
#include <vector>
#include <queue>
#include <cstring>
#include <algorithm>
#define NMAX 50001
#define INF 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define nod first
#define cost second
using namespace std;
ifstream in("bellman_ford.in");
ofstream out("bellman_ford.out");
vector< pair< int, int > > G[NMAX];
vector< pair< int, int > >::iterator Vecin;
queue< int > Q;
int N, M, i, x, y, c, D[NMAX], It, ItNod[NMAX], Nod , start;
bool USED[NMAX];
int main()
{
in >> N >> M >> start;
for( ; M--; )
{
in >> x >> y >> c;
G[x].pb( mp( y, c ) );
}
memset( USED, false, sizeof(USED) ); //initial nu avem noduri in coada
memset( D, INF, sizeof(D) ); //toate distantele sunt infinit
D[1] = 0; //mai putin cea pana la sursa
memset( ItNod, 0, sizeof(ItNod) ); //nu s-a trecut niciodata prin niciun nod
Q.push( 1 ); //introducem nodul 1 in coada
USED[1] = true;
while( !Q.empty() )
{
Nod = Q.front();
Q.pop();
USED[Nod] = false; // scoatem nodul din coada
for( Vecin = G[Nod].begin(); Vecin != G[Nod].end(); Vecin++ ) // iteram prin vecinii nodului
if( D[(*Vecin).nod] > D[Nod] + (*Vecin).cost ) // incercand sa minimizam distanta pana la acestia
{
D[(*Vecin).nod] = D[Nod] + (*Vecin).cost;
if( !USED[(*Vecin).nod] ) // daca nodul nu se afla in coada
{
Q.push( (*Vecin).nod ); // il introducem
USED[(*Vecin).nod] = true;
if( ++ItNod[(*Vecin).nod] > N ) // dca s-a trecut de mai mult de N ori prin el
{
out << "Ciclu negativ!\n"; // inseamna ca in graf exista un ciclu negativ
return 0;
}
}
}
}
for( i = 2; i <= N; i++ )
out << D[i] << ' '; // distantele de la nodul 1( sursa ) pana la celelalte noduri
return 0;
}
*/