Cod sursa(job #1479943)

Utilizator bpalaniciPalanici Bogdan bpalanici Data 1 septembrie 2015 18:14:03
Problema Algoritmul lui Dijkstra Scor 0
Compilator cpp Status done
Runda Arhiva educationala Marime 3.21 kb
#include <bits/stdc++.h>

using namespace std;

typedef int H[50005];

const int inf = 0x3f3f3f3f;
int n, m;
int dist[50005];
bitset <50005> viz;
H Heap;
vector < pair <int, int> > graf[50005];

inline int father(int x)
{
    return x >> 1;
}

inline int left_son(int x)
{
    return x << 1;
}

inline int right_son(int x)
{
    return (x << 1) + 1;
}

void downHeap(H Heap, int n, int k)
{
    int son = 1;
    for (; son;)
    {
        son = 0;
        if (left_son(k) <= n)
        {
            son = left_son(k);
            if (right_son(k) <= n && dist[ Heap[left_son(k)]] > dist[ Heap[right_son(k)]])
            son = right_son(k);
        }
        if (dist[ Heap[son]] > dist[ Heap[k]])
            son = 0;
        if (son)
            swap(Heap[k], Heap[son]);
            k = son;
    }
}

void upHeap(H Heap, int n, int k)
{
    for (; k > 1;)
    {
        if (dist[ Heap[father(k)]] > dist[ Heap[k]])
            swap(Heap[k], Heap[father(k)]);
        else return;
        k = father(k);
    }
}

void insert(H Heap, int &n, int x)
{
    n++;
    Heap[n] = x;
    upHeap(Heap, n, n);
}

void remove(H Heap, int &n, int k)
{
    swap(Heap[k], Heap[n]);
    Heap[n] = 0;
    n--;
    if (k > 1 && (dist[ Heap[k]] < dist[ Heap[father(k)]]))
        upHeap(Heap, n, k);
    else downHeap(Heap, n, k);
}

void dijkstra()
{
    memset(dist, inf, sizeof dist);
    memset(Heap, 0, sizeof Heap);
    Heap[0] = Heap[1] = 1;
    dist[1] = 0;
    viz.reset();
    while (Heap[0])
    {
        int nod = Heap[1];
        remove(Heap, Heap[0], 1);
        for (vector < pair <int, int> >::iterator it = graf[nod].begin(); it != graf[nod].end(); it++)
        if (!viz[it->first])
        {
            int next_nod = it->first, next_dist = it->second;
            if (dist[next_nod] > dist[nod] + next_dist)
            {
                dist[next_nod] = dist[nod] + next_dist;
                insert(Heap, Heap[0], next_nod);
                viz[next_nod] = true;
            }
        }
    }
}

int main()
{
    freopen("dijkstra.in", "r", stdin);
    freopen("dijkstra.out", "w", stdout);
    scanf("%d %d", &n, &m);
    for (int i = 1, a, b, c; i <= m; i++)
        scanf("%d %d %d", &a, &b, &c),
        graf[a].push_back(make_pair(b, c));

    dijkstra();

    for (int i = 2; i <= n; i++)
        printf("%d ", dist[i] == inf ? 0 : dist[i]);
    return 0;
}

///min-Heap
/**
 function Dijkstra(Graph, source):
      dist[source] = 0                                    // Initialization

     create vertex set Q

      for each vertex v in Graph:
          if v != source
              dist[v] = INFINITY                          // Unknown distance from source to v

         Q.add_with_priority(v, dist[v])


      while Q is not empty:                              // The main loop
         u = Q.extract_min()                            // Remove and return best vertex
         for each neighbor v of u:                       // only v that is still in Q
             alt = dist[u] + length(u, v)
             if alt < dist[v]
                 dist[v] = alt
                    Q.decrease_priority(v, alt)

     return dist[]
*/