#define _CRT_SECURE_NO_DEPRECATE
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#define MAXN 32001
#define min(x, y) ((x) < (y) ? (x) : (y))
#define max(x, y) ((x) > (y) ? (x) : (y))
using namespace std;
struct node{
int fath, c;
} DST[18][MAXN];
int R[18][2 * MAXN], Log[2 * MAXN], Lev[MAXN], Fs[MAXN];
int N, M, P, A, B, C, D, X, Y, Z, no, max_h;
vector <int> G[MAXN];
inline int min_lev(int x, int y) { return Lev[x] < Lev[y] ? x : y; }
void DFS(int n = 1, int lv = 1){
Fs[n] = ++no;
Lev[n] = lv;
R[0][no] = n;
max_h = max(max_h, lv);
for (int i = 0; i < (int)G[n].size(); ++i)
DFS(G[n][i], lv + 1),
R[0][++no] = n;
}
void RMQ(){
for (int i = 2; i <= no; ++i) Log[i] = Log[i >> 1] + 1;
for (int i = 1; (1 << i) <= no; ++i)
for (int j = 1; j <= no - (1 << i) + 1; ++j)
R[i][j] = min_lev(R[i - 1][j], R[i - 1][j + (1 << (i - 1))]);
}
inline int LCA(){
int x = Fs[X], y = Fs[Y], diff, row;
if (y < x) x ^= y ^= x ^= y;
diff = y - x + 1;
row = Log[diff];
return min_lev(R[row][x], R[row][x + diff - (1 << row)]);
}
int find_dist(int y, int x){
int q = Lev[y] - Lev[x], minn = 1 << 30;
while (q)
minn = min(minn, DST[Log[q]][y].c),
y = DST[Log[q]][y].fath, q -= (1 << Log[q]);
return minn;
}
int main(){
freopen("atac.in", "r", stdin);
freopen("atac.out", "w", stdout);
scanf("%d %d %d", &N, &M, &P);
for (int i = 2, v, x; i <= N; ++i)
scanf("%d %d", &x, &v),
G[x].push_back(i),
DST[0][i].fath = x, DST[0][i].c = v;
DFS();
RMQ();
// compute min value between x and 2^i x's father
for (int i = 1; (1 << i) < max_h; ++i)
for (int j = 1; j <= N; ++j){
if (Lev[j] <= (1 << i)) continue;
DST[i][j].fath = DST[i - 1][DST[i - 1][j].fath].fath;
DST[i][j].c = min(DST[i - 1][j].c, DST[i - 1][DST[i - 1][j].fath].c);
}
scanf("%d %d %d %d %d %d", &X, &Y, &A, &B, &C, &D);
for (int i = 1, node, a, b, minn; i <= M; ++i){
node = LCA();
a = X != node ? find_dist(X, node) : 1 << 30;
b = Y != node ? find_dist(Y, node) : 1 << 30;
minn = min(a, b);
if (minn == 1 << 30) minn = 0;
if (i >= M - P + 1) printf("%d (%d, %d)\n", minn, X, Y);
// compute next X, Y
Z = minn;
X = (X * A + Y * B) % N + 1;
Y = (Y * C + Z * D) % N + 1;
}
return 0;
}