Pagini recente » Cod sursa (job #6719) | Cod sursa (job #663731) | Cod sursa (job #2574404) | Cod sursa (job #2403976) | Cod sursa (job #1220935)
/*#include <cstdio>
long long n, x;
int mod=1999999973;
void citire()
{
scanf("%lld%lld", &n, &x);
}
int ridp(long long n, long long x)
{
int nr=0;
if(x==0)
return 1;
if(x%2==0)
{
nr=ridp(n,x/2)%mod;
return ((nr%mod)*(nr%mod))%mod;
}
else
{
return ((ridp(n, x-1)%mod)*(n%mod))%mod;
}
}
void rezolva_problema()
{
long long p=0;
citire();
p=ridp(n,x)%mod;
printf("%lld\n", p);
}
int main()
{
freopen("lgput.in", "r", stdin);
freopen("lgput.out", "w", stdout);
rezolva_problema();
return 0;
}
*/
#include <stdio.h>
#include <string.h>
const int n_max = 10001; // Definim numarul maxim de cifre al numerelor
const int m = 1999999973;
int main()
{
unsigned int i, n, p;
long long a, sol = 1;
freopen("lgput.in","r",stdin);
freopen("lgput.out","w",stdout);
scanf("%d %d", &n, &p);
a = n;
for (i = 0; (1<<i) <= p; ++ i) // Luam toti biti lui p la rand
{
if ( ((1<<i) & p) > 0) // Daca bitul i din p este 1 atunci adaugam n^(2^i) la solutie
sol= (sol * a) % m;
a=(a * a) % m; // Inmultim a cu a ca sa obtinem n^(2^(i+1))
}
printf("%lld\n", sol); // Afisam solutia
}