Diferente pentru blog/probleme-de-formula intre reviziile #17 si #18

Nu exista diferente intre titluri.

Diferente intre continut:

In 2006 s-a dat la lot determinarea numarului de acoperiri cu dominouri a unui diamant aztec (http://mathworld.wolfram.com/AztecDiamond.html). Formula e foarte simpla $2^n(n+1)/2^$ insa demonstratia solutiei e foarte complicata - implica folosirea de permanenti apoi transformarea lor in determinanti folosind numere complexe. Probabil nici baietii din lotul national de matematica nu s-ar descurca cu o problema de genul asta. Surprinzator, mare parte din concurentii de la concursul respectiv au rezolvat-o perfect. Unul dintre cei care nu a rezolvat-o, a fost Adrian Vladu, care, in loc sa incerce sa ghiceasca formula, a incercat sa gaseasca rezolvarea matematica. {*FIXME: reformuleaza fraza urmatoare. E un fel de gand personal amestecat cu o informatie*} Inca imi pare rau ca am fost in comisie si nu m-am uitat mai atent pe problema respectiva pentru ca o vazusem inainte in faza de documentare pentru articolele mele cu 'probleme de acoperire':implica-te/scrie-articole si stiam ca nu poate fi rezolvata decat prin ghicirea rezultatului.
Cand participi la un concurs online te poti uita pe 'Online encyclopedia of integer sequences':http://www.research.att.com/~njas/sequences/ Am folosit siteul asta pentru cateva probleme de la concursurile topcoder, si pentru o problema la Oni by Net. Sau poti sa cauti rezultatele pe Google :).
Cand participi la un concurs online te poti uita pe 'Online encyclopedia of integer sequences':http://www.research.att.com/~njas/sequences/. Am folosit siteul asta pentru cateva probleme de la concursurile topcoder, si pentru o problema la Oni by Net; Sau poti sa cauti rezultatele direct pe Google :)
Radu Stefan a folosit o metoda destul de misto pentru a rezolva urmatoarea problema:
_Se cere sa se numere in cate moduri se pot aseza k regi pe tabla de sah de n x n astfel incat regii sa nu se atace._
Radu s-a gandit ca solutia va fi un polinom in doua variabile P(n, k), iar gradul polinomului nu va fi prea mare (parca el a presupus ca limita e 6). Astfel a generat folosind metoda backtracking solutiile pentru n <= 6 si k <= 6. A considerat coeficientii polinomului ca necunoscute si a rezolvat sistemul de ecuatii liniare date P(n, k) si valorile obtinute prin algoritmul backtracking. Astfel luat punctaj maxim pe problema respectiva.
Radu s-a gandit ca solutia va fi un polinom in doua variabile P(n, k), iar gradul polinomului nu va fi prea mare (parca el a presupus ca limita e 6). Astfel a generat folosind metoda backtracking solutiile pentru n <= 6 si k <= 6. A considerat coeficientii polinomului ca necunoscute si a rezolvat sistemul de ecuatii liniare date P(n, k) si valorile obtinute prin algoritmul backtracking. A luat punctaj maxim pe problema respectiva.
Trucul asta se aplica usor pe alte probleme, trebuie doar sa stiti sa folositi metoda de rezolvare a sistemelor liniare.
Daca formula e ceva mai complicata decat un polinom, putem sa speram ca sirul solutiilor e caracterizat de o recurenta liniara, si astfel putem folosi din nou rezolvarea de sisteme de ecuatii lineare pentru a afla coeficientii recurentei.
Sper ca am aratat ca propunerea unei probleme de formula este o idee foarte proasta! Si chiar daca va confruntati cu una veti putea sa o rezolvati rapid folosind micile trucuri expuse mai sus.
Sper ca am aratat ca propunerea unei probleme de formula este o idee proasta! Si chiar daca va confruntati cu una veti putea sa o rezolvati rapid folosind micile trucuri expuse mai sus.
In rest Paste Fericit si Bafta la ONI!

Nu exista diferente intre securitate.

Topicul de forum nu a fost schimbat.