Nu exista diferente intre titluri.
Diferente intre continut:
h2. Discrete logarithm
bq. Given n a prime number and p, q two integer numbers between 0 and n-1 find k such that p^k^ = q modulo n.
bq. Given n a prime number and p, q two integer numbers between 0 and n-1 find k such that $p^k^ = q modulo n$.
This problem can be solved using the baby step, giant step algorithm which uses the meet in the middle trick.
We can write k = i ([sqrt(n)] + 1) + j.
Nu exista diferente intre securitate.
Topicul de forum nu a fost schimbat.