
ACM ICPC strategy

Lukáš Poláček

October 13, 2011

This article is about my experience with ACM contests. I learned this from
other people but mostly from my own and my team’s mistakes.

These are the three most important facts you should bear in mind during
the ACM ICPC contest:

1. It is a team competition and each team has 3 members.

2. Computer time is very expensive.

3. The beginning of the competition is the most important part of the contest.

1 General strategy

From these facts you can derive a very good strategy.
At the beginning of the contest, the quickest typist writes code templates

and a few scripts (e.g. ’c’ for compiling with the right flags). During the same
time, the two others skim through the problem set in search for an easy problem
(one person going from the back, one from the front). As soon as a sufficiently
easy problem is located (one that can be solved within, say, 10-15 minutes),
it’s given to the quickest typist along with a quick description. Due to ICPC
scoring it’s optimal to solve easier problems first.

The other two non-coding teammates continue skimming through the prob-
lem set. If something easier than the first problem is located (solvable in 5
minutes), it takes priority. After at least one member of the team has read
each problem statement, the two non-coding teammates should discuss all the
problems they have just read.

What should not happen in the beginning: After reading a problem I see
that I can solve it. I don’t read other problem statements and solve this problem
for next 2 hours without success. But there were at least 2 other easier tasks
that I didn’t read. That’s why reading all problems and discussion between
members in the beginning is so important.

The team continues with solving problems. If someone knows how to solve
a problem and nobody uses computer, he should code it. If the computer is not
available, he should prepare the code on the paper.

1



2 Useful advices

You are now familiar with the general strategy. We continue with useful advices.

• If you are not sure about your solution, discuss it with your teammates. If
stuck, explain problem to a teammate. Use good judgement if it’s worth
the interruption of him/her.

• If you have time, write code on the paper before you go the computer.
It will save a lot of computer time of the whole team. You don’t have
to write whole code but try to focus on the most important parts of the
program. For example if you are writing binary search, make sure you are
using the right invariant.

• Do not debug code on the computer. Print your code and debugging
output and debug on paper.

• If you are stuck on a problem, take a walk or go to the toilet. The best
ideas come to mind here.

• If you keep getting WA on a problem, let it be for a while and try to solve
another problem. Maybe you will get an idea how to solve it afterwards.
Don’t hesitate to do a complete rewrite of a solution. For most of the
problems it can be done in 15 minutes.

• Is it easy to generate some large inputs, or inputs where you know the an-
swer? If so, it may be worth doing so to test a bit more before submitting.

• When you’re done with a problem, throw all papers concerning that prob-
lem onto the floor (problem set page, printouts, handwritten stuff). Saves
some time searching for paper, and feels good.

• Look at the scoreboard every now and then. If there is a problem that all
other teams solved, it should be easy.

• Keep track of all submissions on a sheet of paper, and keep track of who’s
working on what problem.

• Print early, print often. Print every time you submit.

• Don’t forget the endgame strategy. When time is starting to run out you
don’t want all three people working on separate problems, but focus on
one problem. Try to make sure that all people are still doing something
useful (e.g. one person looking over the back of the coder, and another
person trying to come up with tricky test cases). Knowing when to enter
this mode can be difficult and in particular it takes some willpower to give
up on those additional problems that one knows how to solve but just
have to code up...

2



• So called ”free submit” mode is to be used with caution. If it is not
clear, its meaning is roughly ”at this point, solving another problem is
more important than any time penalty it can possibly cost us so let’s just
submit as soon as we have something that has a non-zero probability of
getting accepted”. Usually it is not entered until the last 30 minutes or so,
but if you have a bad start with many incorrect submissions so that you
already have a large penalty, it can be sometimes be entered very early
(and sometimes exited if the outlook improves).

Acknowledgments

Thanks to Gunnar and Per for comments.

3


