infoarena

infoarena - concursuri, probleme, evaluator, articole => PreOJI 2017 => Subiect creat de: Popa Andrei din Ianuarie 27, 2017, 14:59:04



Titlul: Sortare 2
Scris de: Popa Andrei din Ianuarie 27, 2017, 14:59:04
Aici se pot pune întrebări legate de problema Sortare 2 (http://www.infoarena.ro/problema/sortare2) de la concursul PreOJI 2017 (http://www.infoarena.ro/preoji2017).


Titlul: Răspuns: Sortare 2
Scris de: Nedelcescu Radu Costin din Ianuarie 27, 2017, 16:49:18
Cred ca explicatia este eronata:

Explicaţie: În cazul primului exemplu putem forma 3 subşiruri: (4), (1, 2), (3). Putem pune subşirul (3) la finalul subşirului (4) şi rămân subşirurile: (1, 2), (3, 4). Apoi, punând şirul (3, 4) la finalul şirului (1, 2) obţinem permutarea sortată.

Corectie:

Punem subsirul (4) la finalul subsirului (3)******


Titlul: Răspuns: Sortare 2
Scris de: Marius Nicoli din Ianuarie 27, 2017, 16:56:02
S-a corectat!


Titlul: Răspuns: Sortare 2
Scris de: Victor Teodor Stoian din Ianuarie 31, 2017, 13:49:13
Salut, am o dilema legata de rezolvarea mea. Am luat 40 de puncte cu WA pe celelalte teste si nu imi gasesc contra-exemplu, eu m-am gandit sa numar inversiunile permutarii (ca la matematica, daca k<j si f[k]>f[j] se considera inversiune) doar ca am facut asta pentru secvente, nu pentru fiecare numar si zic ca asta ar fi numarul minim de pasi


Titlul: Răspuns: Sortare 2
Scris de: Mihai Calancea din Ianuarie 31, 2017, 18:30:55
Numărul de inversiuni poate fi de ordinul lui n^2. Ai vreodată nevoie de atâtea operații?


Titlul: Răspuns: Sortare 2
Scris de: Victor Teodor Stoian din Ianuarie 31, 2017, 18:53:49
Sunt n^2 in cazul in care luam luam toate combinatiile de (k,j) cu k,j<=n. Dar eu le-am considerat doar pe cele vecine spunand ca daca k<j f[k]<f[j] nu o consider inversiune pentru ca e ori in ordinea corecta, ori dupa urmeaza ceva mai mic si mi se va calcula la pasul urmator.