Stefan (Stefannnnn)

Stefannnnn
Vezi solutiile trimise
NumeStefan
ContStefannnnn
Rating0
StatutUtilizator normal
Forumtrimite mesaj privat, vezi activitate

cele 24 reguli fundamentale la a fi un sigma
 regula sigma 1: sol_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2\cdot a}
 regula sigma 2: f'(c)=\frac{f(a) - f(b)}{a - b}
 regula sigma 3: C_n=\frac{1}{n + 1} \cdot \binom{2 \cdot n}{n}
 regula sigma 4: \sum^{n}_{1}i = \frac{n \cdot (n + 1)}{2}
 regula sigma 5: \sum^{n}_{1}i^2 = \frac{n \cdot (n + 1) \cdot (2n + 1)}{6}
 regula sigma 6: |X/G| = \frac{1}{|G|} \sum_{g \in G}|X^g|
 regula sigma 7: \frac{2}{\frac{1}{a} + \frac{1}{b}} \leq \sqrt{a \cdot b} \leq \frac{a + b}{2} \leq \sqrt{\frac{a^2 + b^2}{2}}
 regula sigma 8: \frac{AC}{CD} = \frac{AB}{BD}, \Delta ABC \text{ cu } \angle BAD = \angle DAC
 regula sigma 9: \sum^{n}_{0}\binom{n}{i} = 2^n
 regula sigma 10: AH = 2R \cdot \cos{A}
 regula sigma 11: A = i + \frac{p}{2} + 1
 regula sigma 12: (\sum^{n}_{1}{a_i \cdot b_i}) ^ 2 \leq (\sum^{n}_{1}{a_i ^ 2})\cdot (\sum^{n}_{1}{b_i ^ 2})
 regula sigma 13: \sum^{n}_{1}{\frac{a_i ^ 2}{b_i}} \geq \frac{ (\sum^{n}_{1}{a_i} ^ 2) }{\sum^{n}_{1}{b_i}}
 regula sigma 14: \zeta(s) = \sum^{\infty}_{1}{n^s}
 regula sigma 15: \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}
 regula sigma 16: f(\sum^{n}_{1}{p_i x_i}) \leq \sum^{n}_{1}{p_i \cdot f(x_i)}
 regula sigma 17: f_n = \frac{(\frac{1 + \sqrt{5}}{2}) ^ n - (\frac{1 - \sqrt{5}}{2}) ^ n}{\sqrt{5}}
 regula sigma 18: P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}
 regula sigma 19: \sum_{cyc}{x^t(x-y)(x-z) \geq 0}
 regula sigma 20: a ^ {p - 2} \equiv \frac{1}{a} (\text{mod }p)
 regula sigma 21: (n - 1)! \equiv -1(\text{mod }n)
 regula sigma 22: \binom{m}{n} = \prod^{k}_{1}{\binom{m_i}{n_i}} \text{  (mod p)}
 regula sigma 23: (\sum^{n}_{1}{(a_k + b_k) ^ p})^{\frac{1}{p}} \leq (\sum^{n}_{1}{a_k^p}) ^{\frac{1}{p}} + (\sum^{n}_{1}{b_k^p}) ^{\frac{1}{p}}
 regula sigma 24: \sum^{n}_{1}{a_i b_i} \leq (\sum^{n}_{1}a_i^p)^{\frac{1}{p}} + (\sum^{n}_{1}b_i^q)^{\frac{1}{q}}
 regula sigma 25: \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f(c)}{g(c)}
 regula sigma :
 regula sigma :
 regula sigma :
 regula sigma :