
CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Dresden, Germany
July 6 – 12, 2008

Page 1 of 4

Short Task Spoilers

Dominance

This kind of task is a typical scanline problem. Nontheless, considering the shape of the squares that
can be attacked by one inhabited square, a scanline in x or y direction is not suitable.

By using a diagonal scanline, it is possible to take advantage of the square shape of the attack range
(left picture). Then it becomes axes-parallel.

Using a diagonal scanline is equivalent to doing a simple transformation on the coordinates: (x, y) 7→
(x + y, x− y), for example. That transformation results in a lattice with every second square left out
(right picture). Note that the lattice itself can be divided in even and odd squares (either x + y and
x− y are both odd or both even, depicted in different gray shades).

While sweeping over the board, the diagonal scanline keeps track of all attack ranges it intersects.
Then the lower left and the upper right side of the attack ranges mark the entries (complete lines) and
exits (dashed lines) for the scanline:

The important observation is, that you can quickly calculate the number of dominated squares between
two consecutive entry or exit points. In order to do so, you calculate for one step the number of even
and odd squares dominated by white and black bugs, and multiply that numbers by the distance you
move your scanline before the next event.

The total runtime is then governed by the time for sorting the entry and exit points, and the access
time of the data structure used. For N ≤ 3 000 it is not necessary to use sophisticated data structures.
Those with linear access time suffice, resulting in a total runtime of O(N2).

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Dresden, Germany
July 6 – 12, 2008

Page 2 of 4

Information

Edmonds proved in 1973 that the maximum number of edge-disjoint spanning arborescences rooted
at a fixed vertex r equals the minimum cardinality of any r-cut. In the task we are only looking for 2.

One method is to build the first arborescence T1 starting at r using Prim’s method, adding an edge
e = (x, y) only, if there exists an r-y-path edge-disjoint from T1 and e, then build T2 from the
remaining edges; this results in O(V E).

Another method is to first choose any spanning arborescence T1, then start building T2 starting from
r using the remaining edges as long as possible. If (i) there is no remaining edge, (ii) T2 does not
yet cover V and (iii) there are two edge-disjoint spanning arboescences in the graph, the T2-cut now
consists of at least two edges in T1. We now have to “steal” one edge e = (x, y) from T1 to use it
for T2. We therefore try to fix T1 with a r-y-path that does not use T2 or e. If we search for this path
backwards, we get O(V 2).

Knights

First consider the same game with only one knight on the board. Then there’s winning and losing
positions (e.g. R0 = {(1, 1), (1, 2), (2, 1), (2, 2)} are obviously losing positions - all positions that
can reach any of these four are winning positions and so on). In the case of K = 1 one could use DP
to solve the problem. There’s actually a very simple pattern of winning and losing positions (0=losing,
1=winning):
...........
1111111111.
1111111111.
0011001100.
0011001100.
1111111111.
1111111111.
0011001100.
0011001100.
So the case K = 1 can be solved in O(1).

For the case K > 1 the strategy for both players is obvious now: The current player wants to move
all knights on losing positions to the rectangle R0 as quickly as possible and delay the movement of
the knights on the winning positions as much as possible.

So for each losing position p we determine the minimum number of moves m(p) that the knight takes
to get to R0 assuming the other player plays optimally. Equally we compute for each winning position
p the maxmimum number of moves m(p) that the knight takes to get to R0 assuming the other player
plays optimally. Apparently m(R0) = {0}. Recursively we can now define

m(p) = min
p′ reachable from p

{m(p′) + 1}

for each losing position p, and

m(p) = min
p′ reachable from p,p′ losing position

{m(p′) + 1}

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Dresden, Germany
July 6 – 12, 2008

Page 3 of 4

for each winning position.

Once we know m for every knight respectively we are in a winning position if we have a knight in a
winning position p such that for all knights in losing positions p′ the inequality m(p) ≥ m(p′) holds.

Computing the values of m can be done with a dynamic programming approach. Again a quite simple
pattern shows which yields an O(1) formula for m.

Fence

One main observation is that we only need one polygon to get the optimal answer. The cost of erecting
3 fences (and thus making a triangle) to enclose a single tree is still less than losing that tree. So we
simply include the 3 fence posts in the polygon.

This algorithm is divided into two main parts: convex hull and finding the shortest cycle.

First, we do a convex hull of the holes, and then we check for each tree whether it is within the convex
hull. Of course, if there are no trees in that convex hull, we can immediately return the result as 111M .

Then we collect the trees contained within the convex hull. Here we build a directed graph by having
the holes as the vertices, and the pairs of holes as the edges. We only include edge v1, v2 iff all
trees contained in the convex hull are on the left side of that edge. Using this graph, we try to find a
cycle that uses the least number of edges. This can be done using Floyd-Warshall all shortest paths
algorithm. We can use this cycle to pick the fences Farmer Fred uses.

The time needed for the convex hull is O(N log N) by using Graham scan, and checking whether the
trees are inside the convex hull can be done in O(NM). The graph reconstruction needs O(N2M)
steps, while finding the cycle needs O(N3) steps. Therefore, this algorithm runs in O(N3 + N2M).

Order

Maximize the flow in the following network: Vertices are a source, a drain and one node per order and
one per machine. Edges connect (i) the source with each order with a capacity equal to the income
value of the respective order, (ii) the orders with the machines with a capacity equal to the rent of the
respective machine and (iii) the machines with the drain with a capacity equal to the purchase price of
the respective machine.

If an edge from the source to an order has no remaining capacity, the order is rejected.

If an edge from an order to a machine has no remaining capacity, the machine is rented (the rent is
substracted from the purchase price).

If an edge from a machine to the drain has no remaining capacity, the machine is purchased.

Snake

The main idea to solve this problem is to utilise a combination of ternary search and binary search to
simultaneously find the left and the right bounds (meaning head and tail) of the snake. Assume that
we have an interval that covers x units, and we want to locate the head or tail in that interval. We need
to take into account that the snake may move forward, which results in an interval shown in Figure 1.

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Dresden, Germany
July 6 – 12, 2008

Page 4 of 4

x units K units

Figure 1: Interval of x units, appended with K units

By asking at the middle of the interval (rounded up or down depending on whether we search for the
head or the tail), we can guarantee the resulting interval has the size ≤ dx+K

2 e.

What we need to do now is to determine how many times we need to iterate the binary search until
we are certain that we have found a sufficiently good estimate. This happens when x ≤ K + 1. If we
combine both the left bound and right bound intervals, we have the total size to be at most 2K +1. We
simply pick the median of all possible snake lengths left, and we arrive at an estimate which differs at
most K units from the real length of the snake.

.

Figure 2: Ternary search

When we use the dx+K
2 e formula, we find that for initial range size x = 12122 and all K values up to

ten, we still need 14 pairs of questions to ensure the we reach a good estimate. To go around this limit,
we first do ternary search as illustrated in Figure 2. By doing a ternary search for the first iteration, we
ensure that regardless the snake’s reply the size of the resulting left and right intervals to be at most
4041. With x = 4041, we only need extra 12 pairs of questions to reach the good estimate. So we
conclude that the worst case number of calls is at most 13.

